الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 باك علوم رياضية 1 و2

تمارين: المنطق

.01

باستعمال ما يلي: \Leftrightarrow ; \exists ; \forall ; \Rightarrow ; \cong ; \cong . مع (\supset هو رمز ضمن $oldsymbol{B} \supset oldsymbol{A}$ نقرأ $oldsymbol{A}$ ضمن $oldsymbol{B}$) أكتب النص التالى:

- ر المجموعة E هو عنصر من X من المجموعة E هو عنصر من المجموعة E فنهن E.
- ي النا كان كل عنصر x من المجموعة E هو عنصر من f المجموعة f ، يوجد عنصر f من f لا ينتمي للمجموعة f إذن المجموعة f هي ضمن قطعا f"

.02

 $_{1}$ وجد العبارات النافية للعبارات التالية (مع $_{\mathrm{X}}$ من

- $| \forall a > 0, \exists b > 0 : |x-1| < b \Rightarrow |2x-3| < a$
- $\exists (a,b,c) \in \mathbb{R}^3; a \ge 1 \ \exists \ a+b+c=2 \ \exists \ b < a < c \ \underline{2}$

<u>.03</u>

p و p عبارتان.

بين بطريقتين مختلفتين أن العبارة التالية قانون منطقي:

- $p \Rightarrow (q \Rightarrow p) \cdot 1$
- $p \Rightarrow (\bar{p} \Rightarrow q)$.2

.04

نعتبر الاستلزام التالي P(a,b):

$$a+b+ab+1=0 \Rightarrow (a=-1)^{j} b=-1$$

- 1. حدد الاستلزام المضاد للعكس ل: P(a,b).
 - 2. حدد نفي الاستلزام P(a,b)
- $a+b+ab+1=0 \Rightarrow (a=-1)$ بين أن: b=-1

<u>.05</u>

 ${f a}$ و ${f c}$ و ${f c}$ أعداد جذرية و ${f \lambda}$ عدد اللاجذري ${f a}$

 $x+y\sqrt{3}$: تطبیق: أكتب العدد $\sqrt{192+96\sqrt{3}}$ على شكل: $\sqrt{2}$ على شكل $x+y\sqrt{3}$ مع x و y من y.

.06

a>0 و a>0 أطوال أضلاع مثلث ABC حيث a>0 هل يمكن أن يكون المثلث ABC قائم الزاوية.

.07

m .1 وسيط حقيقي .

f(x) = (m-1)x + m أدرس إشارة الدالة:

 $\sqrt{x-1} \ge x-4$. لنعتبر المتراجحة في \mathbb{R} التالية. $x-1 \ge x-4$ أ - حدد x-1 مجموعة تعريف المتراجحة. x-1 المتراجحة على x-1

.08

- $oldsymbol{1}$ بين أن: $1-2^{3n}$ قابل للقسمة على 7. مع n من n
 - \mathbb{N}^* من \mathbf{n} من \mathbf{n} من \mathbf{n} من \mathbf{n} من \mathbf{n}
 - 3. بين أن (مع n من N):

$$\sum_{j=0}^{j=n} (2j+1) = 1+3+5+\cdots(2n+1) = (n+1)^2$$

 $\sum_{i=1}^{n} 1_{i}$ أ i=1 أكتب المجموع (سؤال ب) باستعمال الرمز i=1

 \mathbb{N}^* ب بین أن (مع n من

 $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$

 $\sum_{j=1}^{j=n} j^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$ ج- استنج المجموع التالي:

 $\sum_{j=1}^{j=n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ مع العلم أن:

<u>.09</u>

x و v و a من ^{*+} ℝ.

 $2\sqrt{xy} \le x + y$ بين أن.

4√ab ≤ (1+a)(1+b) : بين أن.

.10

 $(\forall \mathbf{k} > 0 ; |\mathbf{x}| \le \mathbf{k}) \Rightarrow \mathbf{x} = 0$ بین أن: