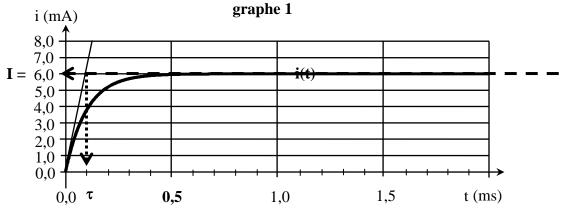
1.1. Si on veut suivre l'évolution de l'intensité i du courant en fonction du temps, il faut enregistrer \mathbf{u}_{BC} (tension aux bornes du conducteur ohmique). En appliquant la loi d'Ohm, on a $\mathbf{u}_{BC} = R.i$ (la mesure de \mathbf{u}_{BC} permet bien celle de i).

Le logiciel devra effectuer le calcul : $i = \frac{u_{BC}}{R}$

1.2.1. En régime permanent l'intensité du courant est constante et maximale. On trace l'asymptote horizontale à la courbe i = f(t). Cette asymptote a pour équation I = 6,0 mA

1.2.2. $\tau = 0.1 \text{ ms}$

La constante de temps correspond à l'abscisse du point d'intersection entre la tangente à la courbe à l'origine et l'asymptote correspondant à i = I.



1.2.3. Valeur théorique :
$$\tau = \frac{L}{R}$$

$$\tau = \frac{0,10}{1,0 \times 10^3} = 0,10 \times 10^{-3} \text{ s} = \textbf{0,10 ms} \text{ La valeur th\'eorique et la valeur exp\'erimentale co\"incident.}$$

1.3. Étude analytique.

1.3.1. D'après la loi d'additivité des tensions on peut écrire :
$$E = U_{AC} = u_{AB} + u_{BC}$$

$$E = L\frac{di}{dt} + Ri$$

Soit l'équation différentielle du premier ordre :
$$\frac{E}{L} = \frac{di}{dt} + \frac{R}{L}$$
.i

1.3.2. En régime permanent, l'intensité du courant est constante donc
$$\frac{di}{dt} = 0$$
,

$$\frac{E}{L} = \frac{R}{L} . I$$

soit
$$I = \frac{E}{R}$$

$$I = \frac{6.0}{1.0 \times 10^3} = 6.0 \times 10^{-3} \text{ A} = 6.0 \text{ mA}$$

2. Influence de différents paramètres.

On va utiliser les valeurs de la constante de temps τ et les valeurs de l'intensité du courant en régime permanent.

				valeurs théoriques		
	E (V)	R (kΩ)	L (H)	$\mathbf{I} = \frac{\mathbf{E}}{\mathbf{R}} \ (\mathbf{A})$	$\tau = \frac{L}{R} $ (s)	
Expérience A	6,0	1,0	0,10	$\frac{6,0}{1,0\times10^3}=6,0\times10^{-3}$	$\frac{0,10}{1,0\times10^3} = 0,10\times10^{-3}$	
Expérience B	12,0	1,0	0,10	$\frac{12,0}{1,0\times10^3} = 12\times10^{-3}$	$\frac{0,10}{1,0\times10^3} = 0,10\times10^{-3}$	
Expérience C	6,0	0,50	0,10	$\frac{6.0}{0.5 \times 10^3} = 12 \times 10^{-3}$	$\frac{0.10}{0.5 \times 10^3} = 0.20 \times 10^{-3}$	
Expérience D	6,0	1,0	0,20	$\frac{6.0}{1.0 \times 10^3} = 6.0 \times 10^{-3}$	$\frac{0,20}{1,0\times10^3} = 0,20\times10^{-3}$	

Valeurs expérimentales	I régime permanent (A)	constante de temps $\tau(s)$	Conclusion
graphe 1	6.0×10^{-3}	0.1×10^{-3}	Expérience A
graphe 2	6.0×10^{-3}	0.2×10^{-3}	Expérience D
graphe 3	12×10^{-3}	0.2×10^{-3}	Expérience C
graphe 4	12×10^{-3}	0.1×10^{-3}	Expérience B